

CVPR 2023 Workshop on Autonomous Driving https://cvpr2023.wad.vision/

TRANSFORMER 1st Place Solution for Waymo Open Sim Agents Challenge 2023

MultiVerse

Every decision a driver makes, at every fleeting moment, spawns a multitude of parallel universes.

MultiVerse

Our multiverse simulator generates a multitude of parallel universes. Each one mirrors the logged real-world driving data, yet diverges subtly in its own unique way.

- Problem Formulation
- Our Solution:
 - MultiVerse Transformer for Agent (MVTA) Simulation
- Experimental Results
 - WOSAC Leaderboard
 - Qualitative Results
- Summary and Future works

Problem Formulation

- Waymo Open Sim Agents Challenge (WOSAC)
 - Given scene context, including map and past positions of the agents (both world agents and ADV), simulate states of the agents at 0.1s intervals for the upcoming 80 timesteps
- The constraints
 - Simulator must be closed-loop, and run in autoregressive manner
 - World agents and ADV must be conditionally independent, i.e., ADV component can be replaced with any arbitrary policy or planner

Traffic Agents Simulation

- Motion Prediction
 - Agent-centric v.s. Scene-centric
 - **Autoregressive** v.s. Non-autoregressive
- Traffic Simulation
 - Learning-based generative model v.s. Heuristic-based model encoding traffic rules
 - Closed loop v.s. open loop
- Our work is inspired by **TrafficSim** and **MTR**

MultiVerse Transformer

• MultiVerse Transformer for Agent (MVTA) simulation: encoder-decoder transformer with autoregressive rollout for closed-loop simulation

Training

• End-to-end training, with loss calculated at each timestep

Training

• **Training sample generation**: randomly pick a point to separate the trajectory to history and future components

Training Loss

Negative log-likelihood loss: maximizing the likelihood of ground-truth trajectory

$$\mathcal{L}_{NLL} = -\log \mathcal{N}(S_x - \mu_x, \sigma_x; S_y - \mu_y, \sigma_y; \rho)$$

Total loss: NLL with L1 losses for velocity and heading

$$\mathcal{L}_{total} = \sum_{t} \lambda_1 \mathcal{L}_{NLL}^t + \lambda_2 \mathcal{L}_{Vel}^t + \lambda_3 \mathcal{L}_{\theta}^t$$

Receding Prediction Horizon

• Receding prediction horizon: prediction horizon is 1s, but only the waypoint of the initial 0.1s is utilized, with the remaining prediction being discarded.

Promoting multi-modal diversity

- Reducing compounding error during autoregressive execution
- More flexibility in the inference setup

Inference

• Top-K sampling: applied at periodic intervals to strike a balance between realism and diversity

Promoting multi-modal diversity, as opposed to selecting the trajectory with the highest likelihood

 Susceptible to the compounding error and could generate trajectories with unrealistic kinematic motions or even drift

Inference

• Variable-length history: aggregate the past trajectory overtime

Aligned with training which also uses variable-length history

Longer history enhances the stability of the simulation by reducing the potential for compounding error

Autoregressive Rollout

WOSAC Leaderboard

- WOSAC Leaderboard
 - 486,995, 44,097, and 44,920 scenarios in the training, validation, and test set, respectively
 - Main metric is the realism meta-metric, aggregating a group of component metrics (kinematic, interactive, and map-based metrics)
 - MTVE: enhanced version of MVTA with three model variants

WAYMO	META METRIC	KINEMATIC				INTERACTIVE			MAP		
LEADERBOARD	REALISM	LINEAR SPEED	LINEAR ACCEL.	ANG. SPEED	ANG. ACCEL.	DIST. TO OBJ.	COLLISION	TTC	DIST. TO ROAD	OFFROAD	$\begin{array}{c} \text{minADE} \\ (\downarrow) \end{array}$
MVTE (ours)	0.5168	0.4426	0.2218	0.5353	0.481	0.382	0.4509	0.832	0.6641	0.6409	1.677
MVTA (ours)	0.5091	0.4365	0.22	0.533	0.4805	0.3729	0.4359	0.8298	0.6545	0.6288	1.8698
MTR+++	0.4697	0.4119	0.1066	0.4838	0.4365	0.3457	0.4144	0.7969	0.6545	0.577	1.6817
CAD	0.4321	0.3464	0.2526	0.4327	0.311	0.33	0.3114	0.7893	0.6376	0.5397	2.3146
multipath	0.424	0.4318	0.2304	0.0193	0.0355	0.3493	0.4854	0.8111	0.6372	0.613	2.0517
sim_agents_tutorial	0.3941	0.3143	0.1738	0.4785	0.4631	0.2641	0.2671	0.7709	0.5575	0.4111	3.6198
QCNeXt	0.392	0.4773	0.2424	0.3252	0.1987	0.3759	0.3244	0.7569	0.6099	0.36	1.083
sim_agents_tutorial	0.3201	0.3826	0.0999	0.0318	0.0391	0.2909	0.336	0.7549	0.5251	0.3804	3.108
linear_extrapolation_baseline_tutorial	0.2576	0.0745	0.1659	0.0187	0.0348	0.2221	0.2211	0.7551	0.479	0.3352	7.5148

A vehicle waiting to get onto the main road, the car turns left or right, or keeps waiting. ADV also demonstrates multi-modal behavior.

Vehicles paused at an intersection, ready to make an unprotected left turn, waiting for the oncoming traffic to clear.

ADV makes a slow right-turn, forcing the agent behind it to slow down or stop.

A congested right lane, blocked by a large truck, and a free-flowing left lane. Trapped cars attempt to switch lanes, overtaking the ADV and the remaining slow traffic.

ADV slows down to allow a car merging onto the main road from a driveway. The car behind ADV overtakes it. In the second simulation, ADV proceeds straight instead of waiting.

Summary and Future Works

- Transformer-based generative model for closed-loop traffic agents simulation
- Novel training, sampling and inference strategies promoting a high degree of realism and diversity
- First place on WOSAC 2023
- Future works
 - Collision avoidance loss
 - Scene-centric and Diffusion-based simulation approaches